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Abstract
Portable computing devices have fast multi-core processors, large
memories, and many on-board sensors and radio interfaces, but
are often limited by their energy consumption. Traditional power
management subsystems have been extended for smartphones and
other portable devices, with the intention of maximizing the time
that the devices are in a low-power “sleep” state. The approaches
taken by these subsystems prove inefficient for many short-lived
tasks common to portable devices, e.g., querying a sensor or polling
a cloud service.

We introduce Drowsy, a new power management state that re-
places “awake.” In the Drowsy state, not all system components
are woken up, only the minimal set required for a pending task(s).
Drowsy constructs and maintains the minimal task set by dynam-
ically and continuously inferring dependencies between system
components at run-time. We have implemented Drowsy within An-
droid, and our results show a significant improvement (1.5-5x) in
energy efficiency for common short-lived tasks.

1. Introduction
The functionality of portable wireless devices, including
smartphones, tablets, sensors, and embedded hardware, is
often limited by energy. Software executing on these de-
vices, including the OS and system software, is designed
to conserve energy. For instance, Android operates in the
low-energy “sleep” state by default; applications must ac-
tively notify the system that they require the device to stay
“awake” (or on) by holding locks that prohibit the system
from sleeping. Enhancements in power management tech-
niques have enabled portable devices with small batteries to
provide service for hours during use, and for days when idle.

A large proportion of energy savings comes from device-
specific hardware power management, e.g., displays have
a lower-power mode, CPUs have low-power speed gover-
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nors, and on-board peripherals can transition to low-power
modes. Yet, surprisingly, such intermediate power states
have largely not made their way into software; rather, power
management for processes is binary. Neither processes nor
the kernel can run when the CPU is powered down, and
when the system is active, all tasks are resumed and may
be run. As a result, even with hardware support for power
management techniques, devices remain highly inefficient
when processing short, interrupt-driven wakeups.

The crux of the problem lies in the observation that cur-
rent power management mechanisms were primarily de-
signed in an era of solely human-driven wakeups, which
tend to last on the order of minutes to hours. However, mo-
bile devices demand a fundamental reconsideration of this
assumption: periodic tasks, such as those that poll on-board
sensors, rely on interrupt-driven wakeups and last on the
order of tens to hundreds of milliseconds. Existing mecha-
nisms to reduce power rely on human-timescale assumptions
by using heuristics for the hardware-supported power man-
agement to reduce consumption. These techniques do not
scale down for supporting such short-lived, machine-driven
computations that touch few devices.

We introduce a new kernel power-management state,
Drowsy, as a replacement for the on state. When transi-
tioning from “sleep” to drowsy, the OS resumes only the
necessary tasks and devices to handle any work performed
prior to returning to sleep. For instance, if the system wakes
up in response to a hardware real-time-clock (RTC) inter-
rupt event, then with Drowsy, only the devices related to the
RTC, necessary system services, and the user-level process
that should receive the alarm signal are woken up. All other
devices in the system remain in a low-power mode, unaware
that the system has transitioned to drowsy, and all unaffected
software, including device drivers, system services, and user
processes remain “frozen.” The system transitions back to
“sleep” after the event triggered by the hardware interrupt is
handled.

A primary design goal for Drowsy is to not perturb user-
space, in that no user-space applications should require mod-
ification, source-code analysis, or recompilation for the sys-
tem to operate in the drowsy state. Therefore Drowsy has to
infer dependencies between devices and tasks (i.e., kernel-



visible threads) at runtime. We describe different methods
for transparently determining these dependencies at runtime.

We present an implementation of Drowsy within An-
droid. Android has no well-defined interfaces that explicitly
declare dependencies involving tasks and devices; we de-
scribe how to instrument the Android kernel to efficiently
infer dependencies dynamically at runtime. We show that
for many common tasks, Drowsy can reduce Android energy
consumption during the wakeup cycle by a factor of up to 5x
with a commensurate reduction in the elapsed time for han-
dling such tasks. We use a custom circuit, detailed in Ap-
pendix A, to precisely measure energy consumed by small
devices. The circuit is able to synchronize kernel events with
the energy traces, and is capable of measuring extremely
low-power draws, such as when the device is suspended. Our
measurements show that the improvements due to Drowsy
translate to significant gains in overall battery life.

The rest of the paper is structured as follows: Section 2
provides background on Android power management. Sec-
tion 3 describes Drowsy’s design, followed by details of our
Android implementation in Section 4. Section 5 presents our
evaluation in which we compare Drowsy with stock An-
droid. We discuss related work in Section 6, and conclude
in Section 7.

2. Power Management Background
The popularity of portable devices has led to various power
management states (beyond on and off ) being incorporated
into OS kernels. The additional states are “sleep” states,
which try to conserve energy by placing portions of the sys-
tem in low-power modes. Two common “sleep” states are
suspend and hibernate, which are defined in the ACPI stan-
dard [4]. Suspend halts executing processes, places devices
in a lower powered state, and leaves RAM powered with the
CPU disabled. Hibernate is similar to suspend, except that
the OS writes the RAM image to non-volatile storage when
hibernating, allowing the system to be fully powered down.

The mechanisms underlying Drowsy build on how mod-
ern kernels transition between power management (PM)
states. We review these transitions between different power
states using Linux as an example. Our description follows
the Linux kernel 3.4 source tree. For more information on
the suspend state in Linux, see Brown et al. [8].

2.1 State Transition in Linux
In Linux, task denotes a kernel-visible thread that is either
part of a user-space process or is a kernel-space thread. Tasks
can be “frozen,” which renders them unschedulable until
they are “thawed.” All user-space tasks and a subset of kernel
tasks are freezable, indicated by a “freezable” flag in the task
state.

Each peripheral device (or simply device) is comprised
of a device driver and a hardware device. The driver is
kernel-resident software that exposes interfaces for access-

ing the hardware device, and supports power management
(PM) methods for transitioning between power states. The
driver registers handlers with the OS for callbacks when
specific interrupt requests (IRQs) are sent by hardware de-
vices. In addition, there are many virtual devices which con-
sist of only a device driver and are not backed by any actual
hardware device. These virtual devices provide various util-
ities (e.g., /dev/random for cryptographically secure random
number generation) and serve to abstract the actual underly-
ing hardware devices (e.g., /dev/rtc).

on to suspend When transitioning to the suspend state,
Linux first synchronizes all filesystem buffers with their
backing stores. Afterwards, the kernel freezes all user-space
and freezable kernel-space tasks, as detailed in Section 4.2.

Once all tasks are frozen, the system begins to suspend
all active devices. The kernel PM subsystem maintains a list
of devices in the order that they are registered. This list is a
topological ordering of the device tree maintained by the OS,
which represents the parent-child relationships between de-
vices. Suspending devices occurs in multiple phases, travers-
ing the list from tail to head (children are handled before
parents). The kernel:

1. instructs each device to prepare for a transition, which
prevents registration of new child devices.

2. requests each device to stop I/O, save state, and enter a
low-power mode.

3. disables device IRQ handlers and allows devices to final-
ize the transition without the possibility of IRQ handler
invocation.

At the end of this process, all devices are suspended in
a low-power state; some devices may completely disable
themselves, while others remain active enough to generate
wakeup interrupts [23]. Finally, the OS disables non-boot
CPU cores and invokes architecture-specific callbacks to fi-
nalize the state transition, setting RAM in self-refresh mode
and instructs the boot CPU to wait for a wakeup interrupt.

suspend to on Modern OSes, especially those running on
portable devices, allow the system to be woken up by a va-
riety of devices that generate wakeup interrupts (e.g., Blue-
tooth controller). After an interrupt is generated by a hard-
ware device, the system wakes up through a resume transi-
tion back to the on state.

The resume transition mirrors the suspend process, start-
ing with the enabling of non-boot CPU cores. Devices power
up starting with the head of the device list, (parents are
handled before children), reversing the order of operations
during suspend. Next, the resume routine thaws processes,
which enables them to run (as detailed in Section 4.2).

We integrated Drowsy into the Android kernel, which
itself has sophisticated power management built on top the
Linux kernel. In the rest of this section, we describe Android
power management in detail.



2.2 Android Power Management
Android inherits the Linux PM subsystem and supports three
global system power states: on, off , and suspend. In order to
conserve energy, Android makes suspend the default state,
i.e., the system suspends unless a task or device driver has
explicitly requested that it stay awake. From the suspend
state, various wakeup events transition the system to the on
state, such as a user pressing the power button, an incom-
ing call, or the real-time clock (RTC) alarm. After a wakeup
event is handled completely (e.g., user finished interacting
with the device), the system transitions back to the suspend
state until the next wakeup event occurs. We term this se-
quence of events (i.e. suspend to on→ event handling→ on
to suspend) as a wakeup cycle.

Wakelocks Android needs tasks to specify when it is safe
to transition back to suspend. It cannot simply transition to
suspend when the CPU is idle, because even with the pro-
cessor completely idle, it is not necessarily the case that
the wakeup event has been handled. An active task may be
blocked waiting on I/O, such as a weather application wait-
ing for a response from the remote server. Wakelocks are
named resources that can be requested by tasks or device
drivers. While any wakelock is held the system does not sus-
pend. When all wakelocks are released, the system immedi-
ately begins transitioning to suspend.

Scheduling Wakeups To allow applications to wake up at
a specified time, Android introduces wakeup alarms via the
/dev/alarm virtual device and the AlarmManager system
service. Applications register an Intent1 to be broadcast
by the AlarmManager at a specified time. The /dev/alarm
device driver manages these alarms by using OS-provided
high-resolution timers; when the system suspends, this
driver uses the RTC device to trigger a wakeup at the next
alarm time.

Early Suspend Users expect the device to go to sleep when
they press the power button, but if a wakelock is held this
cannot occur. Instead, Android allows device drivers to reg-
ister early suspend (and late resume) PM callbacks, which
notify the subscribed drivers when the user-perceptible sleep
state changes. For example, if the device is on and the user
presses the power button to stop interacting with the device,
the system invokes all early suspend callbacks (e.g., display
and backlight power down). After early suspend, and once
all wakelocks are released, the system transitions to the sus-
pend state.

Illustrative Example Figure 1 shows the various steps
within Android for a weather application that periodically
wakes up and polls a remote weather service. The Android
system server provides utility services for user-space

1 Intents are messages that consist of an action and (optionally) associated
data, which either specify a destination or are routed based on content. They
are the primary IPC mechanism in Android.
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Figure 1: Message sequence of system interactions for an
application that periodically checks the current weather fore-
cast in Android. Vertical lines represent tasks and devices,
where breaks indicate when each is frozen or suspended. Ar-
rows represent the interactions between tasks and devices.

applications, including acquiring/releasing wakelocks (via
PowerManager) and setting alarms (via the AlarmManager).
The weather application sets a future wakeup alarm via the
system server, which in turn communicates with drivers
and hardware devices as shown. The system suspends once
all wakelocks are released, which involves freezing all tasks
(canceling the blocked ioctl) and suspending all devices
(which includes setting the hardware RTC alarm). Later,
the RTC device triggers a wakeup interrupt that eventually
reaches the AlarmManager via the restarted ioctl call. The
AlarmManager notifies the weather application by sending
it an Intent; upon receiving the Intent, the application ac-
quires a wakelock, and then performs its necessary actions
before releasing its wakelock.

When the system resumes as a result of the interrupt from
the RTC device, Android wakes up all tasks and devices.
However, the tasks and devices involved in handling the
wakeup event are extremely limited, essentially just those
represented in the figure (as well as the networking device).

3. Drowsy Power Management
Drowsy aims to reduce energy consumption by minimizing
the number of tasks and devices that are woken up in each
wakeup cycle (i.e., suspend to on→ event handling→ on to
suspend). We define wake set to be the set of all tasks and
devices that are awake. A minimal wake set exists for each
wakeup cycle, and is comprised of only the tasks and devices
required to handle the actions performed within the cycle. In
traditional OSs such as Linux and Android, once the system
transitions to the on state, the wake set includes all OS tasks
and devices. This choice of wake set is functionally correct,
but is typically much larger than the minimal wake set.

Drowsy constructs a minimal wake set by identifying
necessary tasks and devices for inclusion to the existing
wake set, which initially consists of the device whose IRQ



triggered the wake event. This process takes place while
transitioning to (and operating in) the drowsy state. To ensure
that this set is both minimal, Drowsy must (at runtime): 1)
determine the dependencies between system components,
2) preserve dependency state during the drowsy to suspend
transition.

3.1 Model
To capture dependencies in the system, we propose a model
that decomposes the system into tasks, resources, and de-
vices. A task represents a single thread of execution and has
an associated state, which denotes whether the task is run-
ning, blocked, or frozen. Resources are system components
without a thread of execution; for example, in Linux, these
include files and sockets. Devices are special resources that
have an additional state which notes whether the underlying
hardware device is in a suspended or resumed state.

Resources expose interfaces for task interaction (e.g.,
open, close, read, write, ioctl), which are system calls
in user-space (or direct function calls in kernel mode). Since
the OS mediates access to resources, a task must acquire a
handle to the resource prior to any interaction. Typically, the
handle is acquired using a variant of open. In the course
of a task’s interaction with a resource, e.g., a read or a
write, the task may block until a specific “wait condition”
on the resource is satisfied. Wait conditions are satisfied as
a result of interactions from one or more other tasks on the
shared resource. For example, a task may block reading a
descriptor, and can subsequently continue when another task
writes to the resource.

Devices have an associated software driver, which imple-
ments the interface to interact with the device. A task can
execute the driver code to interact with the device. Hard-
ware devices must be resumed before their driver code is ex-
ecuted (otherwise the system could fault). In general, driver
code may interact with other resources, which may require
multiple hardware devices to be resumed.

In the process of suspending the system, the OS places
tasks in a frozen state and devices in a suspended state.
Drowsy determines which tasks and devices must be in-
cluded in the wake set (and thus thawed or resumed) to main-
tain correct behavior of the system as if all tasks and devices
are included in the wake set. To do so, Drowsy monitors in-
teractions that allow it to infer dependencies involving tasks
and devices.

3.2 Dependencies
There are two types of dependencies that Drowsy must track:
when a task depends on device (denoted by T→D), and
when a task depends on a wait condition (denoted by T→W).
For a T→D dependency, a task depends on a device being
in a resumed state while calling any of the functions in the
software driver. For a T→W dependency, a task depends on
a wait condition being satisfied by another task before being
able to continue executing.
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Code

Example 1: A
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Figure 2: Examples of the types of interactions and the
resulting dependencies. Each vertical segment represents a
thread of execution, running code from associated with a
task, device, or resource. Lines beside the task’s thread of
execution denote dependencies.

We describe a method of tracking dependencies and con-
structing the minimal wake set based on monitoring all re-
source accesses in the system. For a T→D dependency, a
dependency exists for the duration that the task is accessing
the device, e.g., the time during which an open, read, etc.
call is being executed. For a T→W dependency, a depen-
dency exists while the task is blocked on a wait condition,
e.g., the interval during which a process waits on a descrip-
tor after issuing a blocking read.

Drowsy detects a T→D dependency when a task tries
to access a device. If the device is not resumed, Drowsy
resumes it and adds it into the wake set; otherwise, if the
device is resumed, it is already in the wake set Drowsy
detects a T→W dependency when a task blocks. T→W
dependencies require no immediate action; instead, when
another task later satisfies the wait condition, Drowsy thaws
the dependent task and adds it to the wake set.

Note that when a task is thawed, it may access (or be
in the process of accessing) one or more devices. Drowsy
detects these T→D dependencies and resumes the devices
as necessary.

We illustrate dependency tracking in Figure 2, which
contains examples based on Android. The figure shows
three separate instances of interactions between tasks and
a resource. The open and close operations acquire and re-
lease the resource. Example 1 shows a task opening the



/dev/alarm device file, writing to it, and later closing it.
Here, Drowsy detects a T→D dependency, and resumes the
device prior to the open system call invoking driver code.
Further T→D dependencies are detected for subsequent sys-
tem calls, but since the device is already resumed, the wake-
set is not modified. (Runtime power management may sus-
pend a device after it has been resumed if it is unused; in this
case, the device driver would re-resume the device prior to
subsequent system calls.) Finally, recall that the dependen-
cies exist only for the duration of the system calls.

Example 2 shows two tasks that open and share the same
named pipe, either write to or read from it, and later close
it. Drowsy detects a T→W dependency when the T2R task
attempts to read from the empty pipe; the task must block
waiting for data to be made available by the writing task.
Later, the T2W task writes data to the pipe, which satisfies
the wait condition of the T2R task (and allows it to continue
executing). The system may suspend and then resume at the
point noted by the horizontal line: T2R was blocked and
T2W was running. Since T2W was frozen from a running
state, Drowsy thaws T2W during the resume. Afterwards,
when T2W writes data to the pipe, Drowsy thaws T2R (and
adds it to the wake set) since its wait condition is now
satisfied.

Example 3 is similar to Example 2, except that the oper-
ations are now non-blocking. Task T3R performs two reads:
the first fails due to an empty pipe, while the second suc-
ceeds because T3W had since written to the pipe. Because
the pipe here does not have a wait condition (the reads are
non-blocking), there is no T→W dependency even when the
pipe is empty.

This method of tracking dependencies by individual re-
source accesses results in a minimal wake set by construc-
tion. Devices are added to the wake set (and resumed) if and
only if a task depends on a device, and tasks are added (and
thawed) if and only if another task satisfies their wait condi-
tion.

Instead of tracking individual accesses, a simpler method
would be to track only resource acquisition and release (i.e.,
instrumenting only open and close, but not read or write).
Dependencies would be declared over the entire interval be-
tween acquisition and release. This method would also be
functionally correct but would lead to unnecessarily large
wake sets. Tasks may acquire many resources, but use very
few during any given wakeup cycle. This is particularly pro-
nounced on Android due to commonly shared system ser-
vices such as Binder [5], which is the core IPC mechanism
in Android and is accessed via the /dev/binder device.
All Java applications on Android utilize Binder, thus if one
is added into the wake set then all other Java applications
would need to be woken up.

3.3 State Transitions
Assume the system is in the drowsy state, and may suspend.
In suspending the system, both Android and Drowsy freeze

all tasks and suspend all devices in the wake set; however,
since Drowsy operates using the minimal wake set, it per-
forms less work. In Drowsy, devices transition to suspend
under the same conditions as in Android.

Later, a device sends a wakeup IRQ to the CPU; this
IRQ initiates the transition from the suspend to drowsy state.
During the transition to (and while remaining in) the drowsy
state, Drowsy constructs the minimal wake set for the current
wakeup cycle. This process of adding tasks and devices
to the wake set is similar to how the OS supports paging,
thawing tasks and resuming devices (memory pages) on an
as-needed basis.

Wakeup IRQ Upon resume, the wake set consists of a
single kernel task that executes state transitions. This task
re-enables IRQs. The processor receives the IRQ, which
activates the IRQ handler task and resumes any devices
associated with the IRQ. The IRQ handler may cause other
tasks and devices to be resumed and thawed as necessary.

Previously Running Tasks To preserve correctness, Drowsy
must always thaw all previously running tasks during the
suspend to drowsy transition. Absent static analysis of each
task’s source code, Drowsy cannot predict which resource
a task will interact with (which may or may not block), as
shown in the example next.

wakelock.acquire();
while true do

wakelock.release();
<system may suspend here>
client = socket.accept();
wakelock.acquire();
if client ≥ 0 then

handle(client);

Algorithm 1: Runnable task resumed by Drowsy.

Consider the pseudocode presented in Algorithm 1. This
task waits for an incoming client connection, acquires the
wakelock, communicates with the client, then finally re-
leases the wakelock. The system may suspend immediately
after the task releases its wakelock, while the task is still
running prior to blocking in the accept call. In Android, an
incoming connection will wake up the entire system, allow-
ing the task to continue executing (calling accept, which
immediately returns). However, if Drowsy were to not thaw
previously running tasks, the task would be left frozen be-
cause a dependency does not yet exist (as accept has not
been called). In general, very few tasks are running at the
point the system transitions to the suspend state; most tasks
are blocked waiting on some event.

4. Drowsy on Android
In this section, we describe how we implemented Drowsy
on Android. We provide an overview of the interactions be-
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Figure 3: Overview of interactions system components with
interfaces present in Android.

tween system components in Android, and identify the in-
terfaces that Drowsy must instrument. Afterwards, we de-
scribe the new PM transitions between suspend and drowsy.
Finally, we reflect on the lessons learned from our imple-
mentation of the drowsy state in the Android kernel.

4.1 Android Instrumentation
Drowsy tracks dependencies involving tasks and devices
by instrumenting the interaction interfaces that expose such
dependencies. Figure 3 shows the major interfaces, kernel
structures, and calls that Drowsy instruments. Interactions
between drivers to their associated hardware device do not
need to be instrumented, since the hardware device is neces-
sarily awake while driver code is executing in a task’s thread
of execution. We describe the interfaces identified for all
Drowsy-instrumented interactions next.

Task to Driver Interactions There are a number of inter-
faces through which a task can interact with a device driver.
Most of these interfaces depend on the type of device: block,
character, or network. All of these interactions expose T→D
dependencies.

For drivers that export block or character access to the
device, tasks can invoke system calls on the files present
in the /dev/ directory. Additionally, block devices are
accessed through their mounted partitions. Drowsy inter-
cepts these types of calls by instrumenting the associated
file operations structure in the kernel. While parame-
ters for such operations do not directly point to the under-
lying device, we utilize information contained in the file’s
inode: the type of device (character or block), and the device
major/minor numbers.

Network devices are intercepted by instrumenting the
net device ops kernel structure. In four cases, we found
functions that could be invoked in an IRQ (or software IRQ)
context. In these cases, if the associated device is not al-
ready awake, Drowsy invokes the PM routines to resume
the device; however, the system may fault since the PM
routines assume they are run in process context (and thus
can block). In each of these cases, we identified a precur-
sor function that executes outside of IRQ context, which we

instrumented to resume the device prior to entering the soft-
ware IRQ context. For example, packet transmissions culmi-
nate in a call to the .ndo start xmit function, which runs
in IRQ context; Drowsy instruments the precursor function
dev queue xmit, which enqueues packets prior to trans-
mission.

Drivers and device classes can export attributes via the
sysfs interface, e.g. /sys/class/leds/red/brightness.
Tasks can view and modify device attributes through sys-
tem calls on these files. Drowsy instruments the associated
device attribute or bin attribute structures in the
kernel to intercept these calls.

Tasks may also access devices directly through their I/O
memory regions after calling mmap on a given device file.
Typically this is done in the case of graphics devices. To
handle these types of accesses, Drowsy instruments both the
mmap syscall and the page fault handling code. Drowsy iden-
tifies the regions to track by checking when mmap invoca-
tions meet two conditions: the call corresponds to a device
file, and the returned region is flagged for memory mapped
I/O. Drowsy modifies the page protection bits for such re-
gions to capture accesses that occur prior to the resume of
the corresponding device.

Task/IRQ to Resource Interactions In Android, each ker-
nel resource may have an associated wait queue data struc-
ture in order to keep track of all tasks waiting (blocked) on
some wait condition to be satisfied. These wait queues ex-
pose T→W dependencies.

If a task interacts with a resource and a wait condition is
not met, the task is placed on the associated wait queue and
unscheduled. When the wait condition is satisfied by another
task, there is a call to try to wake up in order to schedule
the waiting tasks. Drowsy monitors this interaction by in-
strumenting the try to wake up function, which sets tasks
as runnable in the kernel (allowing them to be scheduled).

Hardware Device to Driver Interactions A hardware in-
terrupt signal sent to the processor invokes the associated
IRQ handler routine, which was registered by the driver
through request irq. This interaction leads to a T→D de-
pendency.

We require drivers to additionally include the device as
a registration parameter, such that Drowsy can maintain a
mapping between IRQs and devices. Drowsy intercepts the
lowest-level kernel interrupt trampoline routine, and ensures
the device is awake before delivering the IRQ. The interrupt
is postponed if the device was not already resumed, making
use of existing mechanisms for handling pending interrupts.

Driver to Driver Interactions Device drivers expose parent-
child relationships to the OS, which aggregate to form the
device tree. There are three ways drivers interact with one
another: 1) device to ancestral device, 2) through device
class interfaces, and 3) direct invocation. All of these lead to
T→D dependencies.



running uninterruptibleinterruptible

refrigerator()

While

Frozen

thaw_task()

fake signal from freeze_task()
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Figure 5: Task state transitions during Drowsy suspend and
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new Drowsy-only states.

Communication with ancestral devices is the most com-
mon. For example, when drivers need to communicate with
their hardware device through their bus, which is an ances-
tral device, they do so through their bus’s driver. Since device
wakeups proceed from parent to child, all ancestral devices
are already awake.

A device class exposes an interface associated with a gen-
eral type of device (e.g., input class for devices that handle
user inputs). Specific devices can present themselves to the
OS and other drivers as a more general device by wrapping
themselves in the appropriate device class. Drowsy wraps
device class operations to ensure that the underlying device
is awake before these calls proceed.

Direct invocation is when a driver invokes a function di-
rectly in another driver, which is possible because all driver
modules are linked into the kernel image, providing no isola-
tion. Handling these ∼10 instances 2 required manually mod-
ifying drivers where appropriate.

4.2 Drowsy to Suspend
With Drowsy, the Linux suspend transition (as detailed in
Section 2.1), is largely unaffected except for the handling of
tasks. Since Drowsy leaves unused devices in a suspended
state, only those devices that are currently resumed need
to be handled; for these devices, suspend proceeds as in
Android.

Figure 4 shows task state transitions during suspend and
resume in Android. Tasks that can be scheduled are in the
running state. Tasks that are blocked are in either the
interruptible or uninterruptible state. Tasks in the

2 We found these (not necessarily exhaustive) instances through manual
debugging of symptomatic device drivers.

interruptible state transition to the running state if its
wait condition was satisfied (e.g., descriptor is readable)
or if the task receives a signal (e.g., SIGINT from console).
Tasks in the uninterruptible state are in the midst of an
atomic operation in the kernel, and will not transition to the
running state until the operation completes.

Tasks can be in any one of these three states at the start of
suspend. To freeze a task, the kernel sends it a “fake” signal
regardless of task state. running tasks context switch into
kernel mode, and invoke the refrigerator function which
sets their state as uninterruptible. uninterruptible
tasks in the refrigerator transition state only as a re-
sult of the thaw task function. Upon receiving the signal,
interruptible tasks transition to running and follow the
same path as previously running tasks. uninterruptible
ignore the fake signal until their atomic operation completes,
after which they are in the running (and follow the same
path). Upon thaw, all tasks are placed in the running state
and system calls are restarted for interruptible tasks.

Tasks previously in the interruptible state, normally
the vast majority of resumed tasks, restart their system
call and block again since their wait condition is likely
not satisfied. Drowsy avoids this extra computation and
needless device resumes by introducing two new states:
w-unsatisfied and w-satisfied. The basic idea is to
leave interruptible tasks on their wait queues, and
only thaw them when their wait condition is satisfied. Fig-
ure 5 shows task state transitions during suspend and resume
in Drowsy. The w-unsatisfied state is for interruptible
tasks whose wait condition was not satisfied prior to sus-
pend. Upon resume, these tasks restored to the interruptible
state. (It is not strictly necessary to transition w-unsatisfied
tasks back to interruptible, but we do so due to ease of
implementation.)

Interestingly, there are cases in which a wait condition is
satisfied after the system starts suspending yet prior to the
completion of the suspend. Here, the system should sus-
pend since there is no active wake lock, but these tasks
should transition to running upon resume since their wait
condition is satisfied. Drowsy places these tasks in the
w-satisfied state.

4.3 Suspend to Drowsy
Once a wakeup IRQ is generated by a hardware device, the
system begins resuming as before, starting with the enabling
of non-boot CPUs.

Unlike Linux PM, Drowsy avoids explicitly resuming de-
vices during this transition, instead relying on inferred de-
pendencies to wake devices on demand3 . Drowsy then it-
erates over the set of all tasks, handling each depending
on its current state. The tasks in the refrigerator, as well

3 Resuming the RTC class device injects the timekeeping subsystem with
the amount of time passed while the system was suspended. Therefore, the
RTC (and its dependencies) must be woken up on each resume.



as any tasks in the w-satisfied state, are added to the
wake set (and thus woken up). The tasks that remain in the
w-unsatisfied state across the suspend transition are re-
verted back to their previous interruptible state. At this
point the PM transition is complete. Throughout this tran-
sition, and while the system remains in the drowsy state,
Drowsy monitors the interaction interfaces as described ear-
lier in order to resume devices and thaw tasks as needed.

There are two ways that devices can be woken up: task-
and IRQ-originated interactions. In task-originated wakeups,
the interaction with the device must occur through one of the
interfaces described earlier in this section. IRQ-originated
wakeups cannot be interrupted, which prevents the invoca-
tion of device resume routines inline (as they may block).
When the device associated with the IRQ is not in the wake
set, Drowsy uses a separate worker thread that runs in pro-
cess context to resume the device. In the process of resuming
the device, the IRQ handler is re-enabled and the kernel re-
sends the pending interrupt.

4.4 Lessons Learned
We integrated Drowsy into the Android 4.2.2 kernel for the
Nexus 4 smartphone. The result of our work is a relatively
small set of changes (4608 LOC), that efficiently supports
Drowsy. Our version of the Drowsy-enabled Android kernel
is stable, and supports all devices on a modern phone, includ-
ing the cellular, WiFi, and Bluetooth networking stacks, and
all sensors. As Drowsy requires no changes to user-space
applications, the complete Android runtime is supported;
Drowsy devices can and do run all Android applications.

Retrofitting a new run state into a fully featured, general
purpose OS for a mobile platform was a major effort. Along
with the usual interfaces (file system, sockets, shared mem-
ory), Drowsy had to address many undocumented interac-
tions such as direct driver-to-driver calls. Drowsy changes
a basic assumption within the system: that every task and
device is available when the system is on. Changing this as-
sumption revealed several bugs in drivers (e.g., conflating
level- and edge-triggered IRQs) and esoteric ways in which
drivers are related to each other.

Drowsy relies on the ability to wake up devices and re-
send an IRQ later if the IRQ is disabled when triggered
(meaning the devices are still suspended). Unlike edge-based
IRQs, level-based IRQs are not resent as the level is main-
tained by the hardware interrupt controller. In over fifty
cases, device drivers incorrectly specified an IRQ to be han-
dled as a level-based IRQ when it is in fact edge-based (and
vice-versa). This caused the interrupt to be correctly masked
in Drowsy, whereas these were (incorrectly) delivered in An-
droid, causing the bug to not manifest itself. In some cases,
including the I2C bus, the driver did not specify its relation-
ship to its parent device, forcing Drowsy to fail to resume all
necessary devices. Again, these latent bugs do not manifest
themselves in stock Android.

I/O Event Description
Alarm RTC (ALM) Wakeup and set up next alarm
BT Connection (BT2) Handle an incoming Bluetooth connection
Pull Weather (PUL) Fetch weather update from remote server
Push Notify (PSH) Push notification messages to the phone
Sensor (SEN) Sample the accelerometer sensor

Table 1: I/O events used in the evaluation.

5. Evaluation
In this section, we begin by measuring the costs (in time and
energy) associated with PM transitions in stock Android, and
analyze the overhead of transitions relative to completing
common periodic tasks. Next, we analyze the dependencies
for common periodic tasks, and demonstrate that tracking
dependencies only by resource acquisitions results in overly-
broad wake sets. Afterwards, we investigate the overhead of
Drowsy instrumentation in the kernel, and the new costs for
PM transitions in/out of the drowsy state. Next, we analyze
the time speedup and energy efficiency gains of Drowsy
over stock Android for common periodic tasks. Finally, we
evaluate the battery life improvements of Drowsy.

5.1 Platform
We use the Nexus 4 smartphone (released 2012) for most of
the evaluation, The Nexus 4 contains a 1.5GHz quad-core
CPU with 2GB of RAM, with seven different sensors and
four wireless radios [2]. Drowsy is implemented on the An-
droid 4.2.2 kernel for the Nexus 4, which is a fork of version
3.4 of the mainline Linux kernel. We also evaluate stock An-
droid PM on two prior generations of devices: the Nexus S
(2010, Android 4.1.2, last supported) and the Galaxy Nexus
(2011, Android 4.2.2).

5.2 Methodology
We developed a simple Java application which continuously
acquires a wakelock, performs specific I/O, and releases the
wakelock (allowing the system to suspend). The I/O events
we evaluated are listed in Table 1. For the SEN event, we reg-
ister and unregister a SensorEventListener during each
wakeup to avoid unnecessary energy consumption while the
system is suspended. For each event, we only enable the re-
quired radios; this means that only Bluetooth is enabled for
BT2 and only WiFi is enabled for PUL and PSH. Each exper-
iment consists of 40 such iterations for each I/O event. As
part of performing evaluations on a fully-working system,
other applications and system services may perform periodic
tasks that are separate from our benchmarks. To account for
this, we discarded wakeup cycles that did not correspond to
the periodic tasks run by our microbenchmarks.

To gather timing measurements, we instrument appropri-
ate points in the kernel’s PM transition handling code to log
the current timestamp. For measuring energy consumption,
we collect a trace of the phone’s power consumption which



NS

GN

N4

 0  20  40  60  80  100

Energy (mJ)

 0 30 60 90 120 150 180

s

w

s

w

s

w

Time (ms)

All Devices Tasks Other

Figure 6: Breakdown of time and energy for the major com-
ponents of the suspend (s) and wakeup (w) for the ALM I/O
event. These measurements are performed on three devices:
the Nexus S (NS), Galaxy Nexus (GN), and Nexus 4 (N4).
The bars and whiskers represent the 25th, 50th and 75th per-
centiles.

we synchronize with the timestamp log. We include more de-
tailed information on our measurement setup in Appendix A.

5.3 Stock Android Overhead
Figure 6 shows the time and energy consumed by the PM
transitions for the ALM I/O event across three generations
of Nexus devices: the Nexus S (NS), Galaxy Nexus (GN),
and Nexus 4 (N4). The result breaks down the time and
energy measurements for handling of tasks and devices with
the remainder aggregated into other (e.g., syncing buffered
file-system data, disabling non-boot CPU cores).

Most of the time and energy involved in PM transitions is
spent thawing/freezing tasks and resuming/suspending de-
vices, accounting for over 97% of the time for the Nexus 4
and Nexus S smartphones, and 81% for the Galaxy Nexus.
The Galaxy Nexus contains a dual-core processor, but it is
unable to efficiently disable and enable cores. This over-
head accounts for the high “Other” category for the Galaxy
Nexus. While the Nexus 4 contains a quad-core processor,
the new software includes appropriate hardware and driver
support to enable and disable cores on-demand without as
much overhead.

We use the latest device in our experiments (Nexus 4)
for the rest of the results. In Figure 7, we plot the time and
energy associated with the entire wakeup cycle (“All”), as
well as individually for the event and the PM transitions.
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Figure 7: Breakdown of time and energy spent in PM
transitions and event handling for common I/O events on the
Nexus 4. The bars and whiskers represent the 25th, 50th and
75th percentiles.

Several of the short-lived events witness high variance
in time (and to a lesser extent in energy), as demonstrated
by the width of the whiskers representing the range of 25th

to 75th percentile values. We attribute this high variance to
mpdecision, a closed-source user-space application from
Qualcomm that enables/disables CPU cores and modifies
their operating frequency. Our logs show that mpdecision
varies the number of active cores and the CPU frequencies
during these tests, even though the work performed in each
wakeup is the same. Finally, the PUL event is affected by
network latency from the smartphone to the remote server,
which ranged from 21ms to 97ms.

For all events except for BT2 and SEN, the median An-
droid state transition costs are much larger than the median
event costs, with push notifications being the largest at a 37x
energy consumption ratio. This overhead severely limits the
efficiency of periodic tasks, even when they access a remote
server.

Even for BT2 and SEN, PM transitions are a significant
factor, representing 32% and 23% of the total energy costs
respectively. BT2 requires two wakeup cycles to handle the
incoming connection; the additional wakeup cycle is a result
of the Bluetooth controller informing the OS that the con-
nection ended (even though close was called in the initial
wakeup cycle). Note that Bluetooth Low Energy (BLE) [6]
is not available in Android 4.2.2 via the Java APIs, nor does
the device driver for the Nexus 4 export it as a Bluetooth
HCI network device (accessible via the socket interface).
We estimate that the more-efficient communication mech-
anisms present in BLE (tens-hundreds of millisecond scan
times) would cause it to incur even higher transition over-
heads with respect to the event handling.
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Figure 8: The dependency graph for the PUL I/O event. The directed edges represent interactions that resulted in the wakeup
of a destination components.

5.4 Dependency Analysis
Figure 8 shows the dependency graph for the PUL I/O event,
which is based off of the weather application example de-
scribed in Section 2.2. In the dependency graph, vertices rep-
resent tasks and devices, while directed edges mean that the
destination was added to the wake set as a result of an inter-
action by the source. We only include tasks and devices that
appear in 90% or more of the wakeup cycles for a given pe-
riodic task, due to interference from other events that occur
while the system is running.

This figure shows Drowsy at runtime, as it dynamically
resumes tasks and devices on an as-needed basis. The An-
droid system server process provides many system ser-
vices, such as PowerManager and AlarmManager. The
DrowsyBenchmark process contains our benchmarking ap-
plication for evaluating various I/O events, with Worker as a
thread created to perform the periodic tasks. Both processes
contain Binder * tasks, which are used by Binder for inter-
process communication. The Compiler task is invoked by
the Dalvik VM for Just-in-Time compilation.

The I/O event wakeup is initiated by a series of IRQ
events, which represent an alarm triggered by the rtc-pm8xxx
device. Afterwards, the rtc0 driver notifies the alarm driver
of the IRQ, which signals a wakeup on the “alarm pending”
wait queue (occupied by AlarmManager). At this point,
the PM resume routine thaws previously running tasks
(e.g., mpdecision) or tasks in the w-satisfied state. After-
wards, the AlarmManager process broadcasts an Intent,
which culminates in the execution of DrowsyBenchmark

and its Worker task. The Worker then opens a HTTP con-
nection to the remote weather server, which utilizes the WiFi
radio on the device. Finally, once the Worker (and all other
tasks/drivers) release their wakelocks, the PM suspend rou-
tine takes place. During suspend, the syncing of file system
buffers involves the two separate flush-* threads, each
handling a particular block device.

This example involved only 16 devices and 15 tasks. In
contrast, the stock Android PM would have woken up 846
devices and ∼800 tasks. Note that in these experiments,

Tasks Devices
I/O Event Count % Count %
ALM 14 1.8 14 1.7
BT2 12 1.4 16 1.9
PUL 15 1.8 16 1.9
PSH 5 0.6 9 1.1
SEN 21 2.6 27 3.2
Power Button 135 16 77 9.1
Incoming Call 142 18 97 12

Table 2: The sizes of the minimal wake sets, broken down
into tasks and devices, for various I/O events. The percent-
age listed is in comparison to the total number of tasks or
devices registered at that time.

Drowsy and Android both run entirely on the stock factory
image, with no user-installed applications. In practice, An-
droid may have to freeze and thaw hundreds more tasks de-
pending on the apps installed and executed by the user.

Table 2 shows the total number of tasks and devices con-
tained in the minimal wake set constructed by Drowsy for
all of the I/O events. The result also includes the percentage
of tasks and devices Drowsy wakes up relative to the total
number of tasks and devices registered with the OS (which
is what Android PM would wake up).

For additional context, we consider two events: a user
pressing the power button to wake the device, and an incom-
ing phone call. Even though these two events involve a sig-
nificantly higher fraction of components (between ∼3-30x)
compared to the periodic short-lived events, it is instructive
to note that a majority of the components are left suspended.

Tracking Dependencies by Resource Acquisitions We
also measured dependency tracking by open and close,
instead of individual accesses. We examined the set of open
read-write files on the system to determine what percentage
of tasks would be dependent on one another. The thirteen
most commonly shared resources are listed in Table 3.

The /dev/ properties file is similar to the Windows
registry and is used by applications on Android to save con-
figuration information. This dependency alone would sug-



File % File %
/dev/ properties 83 /dev/cpuctl/a/tasks 69
/dev/null 83 /sys/k/d/tr/trace marker 69
/dev/log/events 78 /dev/cpuctl/a/b/tasks 68
/dev/log/main 78 /dev/urandom 66
/dev/log/radio 78 /system/bin/app process 66
/dev/log/system 78 /dev/alarm 40
/dev/binder 70

Table 3: The top 13 most commonly opened read-write files
and the percentage of tasks that have them open. Paths are
abbreviated whenever the expansion was unambiguous to
save space.

gest that a naive implementation would over-approximate
the minimal wake set so completely that it hardly differs
from Android at all. Even if an implementation of Drowsy
selectively tracked dependencies on /dev/ properties

and /dev/binder by individual accesses, a requirement to
meaningfully reduce the wake set, other devices and files
present on the system represent highly connected nodes in
the dependency graph. Constructing (hundreds or thousands
of) special cases would likely be more difficult than our im-
plementation based on tracking individual resource accesses.

5.5 Drowsy Instrumentation Overhead
We first evaluate the overhead imposed by Drowsy’s instru-
mentation of Android. Checking if a device is awake re-
quires only one “if” statement, with no locking required for
the common cases (outside of IRQ-based wakeups). When
tasks interact with a character or block device, Drowsy must
only additionally determine if it is a storage-backed file or if
it is a device file (i.e., /dev/ files) which allows Drowsy to
check if the appropriate device is awake.

We measured the time it takes to complete read and
write system calls, as well as the time it takes to broadcast
an Intent. For file-backed operations, we used /dev/null

to read or write a page of data. For Binder, we measured the
broadcast of an intent with no registered subscribers. These
experiments are conservative, as they maximize the relative
overhead of Drowsy because very little work is done.

Since the time taken for a single system call is on the or-
der of our measurement granularity, ∼30µs using the most
accurate clock source (getrawmonotonic), we measure the
time taken to complete 1,000 calls and compute the aver-
age. We run 10,000,000 total operations, which corresponds
to collecting 10,000 such averages. Table 4 lists the median
times taken by each operation, in addition to ranges repre-
senting the 95% confidence interval for the measurements.
These results show that Drowsy’s overhead from instrument-
ing system calls is negligible.

Drowsy Transitions Figure 9 shows the overhead of the
major components of PM transitions under Drowsy. This re-
sult is analogous to the breakdown of Android PM transi-
tions in Figure 6.

Operation Android (ns) Drowsy (ns) Change (%)

Read 53, 288+122
−30 53, 288+31

−30 +0.00

Write 56, 279+0
−30 56, 340+0

−0 +0.11

Intent 329, 451+382
−411 330, 291+366

−458 +0.25

Table 4: Median time taken for operations involving syscalls
with Drowsy-wrapped interfaces. The ranges corresponding
to 95% confidence intervals for the median values.
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Figure 9: Energy costs associated with the major portions
of the suspend (s) and wakeup (w) transitions handled by
Drowsy PM, for a variety of I/O event wakeups. The bars
represent the median values, while the whiskers correspond
to the 25th and 75th percentile values.

Suspend transitions are factored as before, considering
time and energy spent handling devices and tasks and the re-
maining portions aggregated in the “Other” category. How-
ever, for wakeup transitions, we are only able to report on
the aggregate measurements during the PM transition into
the drowsy state. Drowsy constructs the wake set throughout
the transition to (and while remaining in) the drowsy state,
with devices and tasks woken up in small batches (e.g., a de-
vice and its ancestors). As these batched wakeups can take
time on the order of our power sampling interval (500µs for
2kHz), we cannot accurately break down the costs further,
nor examine the time and energy costs beyond the initial
transition. We account for these hidden costs later in this sec-



tion, when we analyze the time and energy associated with
the entire wakeup (i.e., PM transitions and event handling).

Figure 9 shows that Drowsy dramatically reduced the
time and energy associated with the PM transitions in com-
parison to Android. For instance, The ALM I/O event re-
quires a median 118ms time and 38mJ energy for the sus-
pend transition (see Figure 6). By instead suspending from
the drowsy state, Drowsy achieves a 6.6x speedup in time
and 5.3x increase in energy efficiency.

5.6 Drowsy vs. Android – Wakeup Cycles
Figure 10 shows the factors of improvement for Drowsy over
stock Android in terms of time and energy consumed during
a wakeup cycle (which includes the event handling). In ad-
dition to the stock Android and Drowsy configurations, we
also evaluate three other configurations: Android+, Android-
NoMPD, and Drowsy-NoMPD. Android+ incorporates non-
Drowsy changes that we have implemented, preventing file
system buffer synchronization from taking excessively long
(due to checking for completion every 250ms) and using
an exponential backoff between checks to determine if all
processes are frozen instead of a fixed 10ms interval. The
Android-NoMPD and Drowsy-NoMPD configurations dis-
able the mpdecision service, set one CPU core active, and
use the powersave frequency scaling governor.
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Figure 10: Comparison between Drowsy and Android for
the total time and energy involved in the handling of vari-
ous I/O events. The bars represent the improvements in the
medians, and are normalized to the stock Android configu-
ration.

Results show that Drowsy is at least 1.5x as energy ef-
ficient as Android. For the ALM, PSH, and PUL periodic
tasks, Drowsy is 3-5x as energy efficient as Android. Even
though BT2 is an outlier due to the large amount of time
and energy spent in handling the Bluetooth connection, the

Configuration Avg. Power (mW)
None 14.34
Bluetooth 22.65
WiFi 24.52

Table 5: Average power consumed while in the suspend state
for different radio configurations.

1.57x gain is substantial; we expect Drowsy will provide
even greater energy savings for BLE. Additionally, Drowsy
is over 2x as energy efficient as Android for SEN, even
though the total time of the wakeup cycle does not change
substantially. In this case, Drowsy actually enables more en-
ergy efficiency within the event handling itself by allow-
ing cpuidle to opportunistically place the CPU in a deep
idle state. We note that these are the worst-case results for
Drowsy, since the devices were running no additional user-
space applications beyond what the factory image includes.

5.7 Drowsy vs. Android – Battery Life
In order to quantify Drowsy’s improvement in battery life
over Android, we first examine the daily battery life con-
sumption when the smartphone executes only a single peri-
odic task (from Table 1). We use an equation-based approach
to observe the efficiency gains across a wide spread of tim-
ing intervals for the periodic tasks. Equation 1 represents the
fraction of battery life consumed in a day, with constants and
parameters as follows:

1. Psuspend ≡ Average power consumed while in the sus-
pend state.

2. Twc,Ewc ≡ Average time and energy consumed during
the entire wakeup cycle for handling the periodic task.

3. Ebattery ≡ Amount of energy stored in the battery. For
the Nexus 4, this is equal to 28,800,000 mJ.

4. i ≡ Interval in seconds between executions of the peri-
odic task.

BLdaily(i) =
86400

((
1− Twc

i

)
Psuspend +

Ewc

i

)
Ebattery

(1)

Earlier measurements from the microbenchmarks provide
us with Ewc and Twc for each periodic task. We measured
Psuspend for a various configurations and provide the values
in Table 5. The power consumed while suspended grows
based on the set of enabled radio interfaces, as they perform
their own periodic tasks on their hardware controllers. For
example, Bluetooth in discoverable mode briefly listens for
incoming requests every 1.28 seconds.

In order to validate our approach, we compare the per-
centage of daily battery life consumption calculated by
Equation 1 to actual measurements. For each I/O event, we
capture a power trace for one hour and extrapolate the bat-
tery life consumption to an entire day. For the purposes of



I/O Event Eq. 1 (%) Actual (%) Diff (±%)
A
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ro

id
ALM 5.83 6.26 -6.80
BT2 31.64 31.83 -0.63
PSH 9.78 9.87 -0.87
PUL 9.85 10.36 -4.87
SEN 9.52 9.60 -0.83

D
ro

w
sy

ALM 4.94 5.11 -3.33
BT2 29.50 29.67 -0.58
PUL 8.67 8.47 +2.45
PSH 8.08 8.31 -2.70
SEN 6.27 6.76 -7.25

Table 6: Validation of calculated daily battery life consump-
tion from Equation 1 in comparison to the actual measured
(and extrapolated) consumption.

our validation, we use a 10 second event interval across the
board and use the Android-NoMPD and Drowsy-NoMPD
configurations to avoid additional variance. As shown in Ta-
ble 6, most of the differences between computed and mea-
sured values are roughly 5%. Part of the difference is due to
wakeups generated by the OS or other applications, which
we do not filter in these long-running experiments. Since
BT2 involves two wakeup cycles, we include the energy
consumed by the Bluetooth controller between these wakeup
cycles in Ewc (and correspondingly the time in Twc).

Figure 11 shows the improvement of Drowsy over An-
droid in terms of battery life for individual periodic tasks.
As in the validation, we compare the performance of the
Drowsy-NoMPD and the Android-NoMPD configurations.
All lines approach the asymptote at 0% improvement as the
interval between events grows, as Drowsy does not affect
power consumption while the system remains in a suspended
state.

Drowsy improves battery life the most when considering
the SEN event, approaching near 100% improvement at a 3
second interval between events. This follows from Figure 10,
which shows that Drowsy is over 2x as efficient as Android,
and the fact that the SEN wakeup cycle takes 2.2 seconds
to complete (close to the 3 second interval). Drowsy also
improves battery life significantly for the ALM, PUL, and
PSH events.

These results isolate different types of wakeups. Typi-
cally, the applications on the system will use more then one;
the benefits of Drowsy will aggregate across all applications.

6. Related Work
Prior work has addressed power management efficiency
across both hardware and software domains.

Hardware Current mobile systems-on-chip (SoCs) [3, 15]
support aggressive processor power management in hard-
ware, allowing smart drivers to take advantage of idle peri-
ods while in the working state [14]. Additionally, these idle
states are used more often due to timer coalescing, which
attempts to group running tasks together to maximize idle
time. Some SoCs contain co-processor elements, which are
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Figure 11: Drowsy battery life improvement in comparison
to Android, for individual periodic tasks with intervals be-
tween 3 seconds and 5 minutes.

low-power processors used to offload tasks from the main
processor [7, 17, 19]. In smartphones, they are used for
continuous-sensing tasks, constantly collecting and process-
ing sensor data. Drowsy complements these advances by im-
proving suspend and wakeup transitions for when the entire
system can sleep.

Software Independent of the system-wide PM state tran-
sitions, individual drivers can perform runtime PM while in
the working state to transition to a suspended state [22]. Ex-
isting runtime PM requires all tasks and devices to be re-
sumed at the start of each wakeup, and relies on heuristics
(from the device driver, or central PM agent [24]) to en-
ter runtime suspended states which may not trigger during
short-lived wakeups. Xhu et al. [24] introduced techniques
to provide automatic runtime PM for devices at the OS-
level, without the need for device driver writers to explic-
itly interact with the runtime PM subsystem. Drowsy com-
plements such techniques for making devices more energy
efficiency, as it focuses on improving short-lived, machine-
driven wakeups.

Recognizing that system-wide PM state transitions are
costly, Motorola created the QuickWakeUp [9] driver to im-
prove performance for periodic driver tasks by not fully wak-
ing up the system. Since drivers (and devices) are generally
self-contained, QuickWakeUp does not require any depen-
dency tracking. Drowsy improves upon QuickWakeUp by
supporting wakeup events that involve user-space applica-
tions. Since Drowsy avoids resuming unnecessary tasks and
devices in a transparent manner, essentially all drivers in the
system get QuickWakeUp-like benefits with Drowsy.

Wright et al. [20, 21] propose to selectively resume de-
vices based on detailed information provided by the task as-
sociated with an incoming Wake-On-LAN packet. Drowsy
provides similar benefits, while also addressing task wakeup
(which we showed has non-trivial overhead for smartphones
in Section 5). Additionally, we demonstrate that it is feasi-
ble to provide the drowsy state while remaining completely
transparent to user-space applications that run on disparate



hardware platforms, and requiring relatively little modifica-
tion of device drivers.

Meisner et al. proposed PowerNap [12], a PM approach to
reduce energy consumption in data center servers by remain-
ing in a low-power “nap” state and transitioning to a high-
performance active state when packets arrive. They postu-
lated that if 1-10ms transition times were available, their
approach would provide significant power savings based
on real-world traces. They work with Dreamweaver [13],
proposing a power-aware scheduling approach to coalesce
idle and busy periods over multiple CPU cores. Dreamweaver
relies on an available co-processor to monitor incoming net-
work packets and to wake the system up (as appropriate)
to handle queued packets. These approaches are similar to
Android PM, whereby the system remains in a low-power
state between wakeups generated by the hardware devices.
These results, which assume fast suspend and resume, moti-
vate broader uses for Drowsy. As part of our future work, we
will port Drowsy to stock Linux kernels and evaluate gains
in other environments.

Several systems [10, 11, 16, 18] interpose between appli-
cations and the sensing platform to identify which devices
should be used to answer queries regarding the user’s con-
text. ACE [16], for instance, allows applications to query
context attributes, using relationships between sensor data
and context changes to infer which sensors should be used.
Drowsy complements these approaches as it will only wake
up the requested devices, instead of the entire system as in
existing Android.

7. Conclusion
In this paper, we have introduced a new kernel power-
management state, drowsy, as a replacement for the on
power state. Drowsy tracks dependencies between system
components at runtime, and dynamically resumes only those
tasks and devices that are required. We describe different
methods for tracking dependencies at runtime, and show that
a commercial kernel (Android) can be retrofitted to support
Drowsy. Our Android implementation is efficient, and im-
proves energy consumption 1.5-5x for common short-lived
tasks. This is a remarkable result, because the Drowsy kernel
is fully functional, and yet significantly improves the power
consumption for a highly optimized OS that is deployed on
tens of millions of devices.

Our paper and evaluation mostly focuses on mobile de-
vices, but prior work [12, 13] has noted potential benefits for
faster PM transitions in data centers. As part of future work,
we plan on porting Drowsy to stock Linux kernels and eval-
uating the energy efficiency gains in other environments.

The source code for our implementation is publicly avail-
able at:

http://www.cs.umd.edu/projects/drowsy
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A. Power Measurement Setup
Figure 12 shows the circuits and equipment involved in collecting
a power trace for the phone. We use three digital multimeters
(DMMs), which are triggered using a common function generator
to obtain coherent samples. One DMM measures the voltage across
the terminals of the phone (VPhone). Another DMM measures the
voltage (VShunt) across a precision shunt resistor (RShunt = 0.18Ω);
the measurements are used to compute the current IPhone which is
equal to VShunt

RShunt
. The coherent measurements of VPhone and IPhone

form the power trace.
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Figure 12: The circuits and equipment used to collect the phone’s
power trace and allow for synchronization with the software times-
tamp log.

To measure the energy consumption for individual portions of
each wakeup cycle, we must synchronize the power trace with our
log of timestamped events. This requires an externally measureable
signal such that we can associate the timestamp when such a signal
is generated to its appearance in the power trace. We use the notifi-
cation LED with an affixed photoresistor to provide this signal, by
toggling the LED on for 3ms. The toggling of the LED lowers the
resistance of the photoresistor, which represents a drop in the volt-
age (VPhoto) measured by a third DMM. This must be performed
during each wakeup cycle, since the OS relies on the RTC (with
a timing granularity of 1 second) to account for the time passed
while in a suspended state. Since we did not have a third DMM
available, we instead used an oscilloscope to probe VPhoto as well
as VShunt. We triggered waveform captures based on the drops of
VPhoto, and aligned these captures with the power trace based on the
VShunt waveform.

All of the measurements were sent back to a host computer
over the LAN. We extended available scripts [1] from researchers
working in the Embedded Systems Research Lab at University
of Michigan, which allow for remote control of the measurement
equipment.
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